Flatland Optics with Ultrathin Metasurfaces

J. Sebastian Gomez-Diaz

Department of Electrical and Computer Engineering University of California, Davis jsgomez@ucdavis.edu

□ Introduction

- Graphene plasmonics: THz devices & antennas
- Non-reciprocal metasurfaces
- □ Hyperbolic metasurfaces
- □ Non-linear metasurfaces
- Multidisciplinary
- □ Conclusions

□ Introduction

- Graphene plasmonics: THz devices & antennas
- Non-reciprocal metasurfaces
- Hyperbolic metasurfaces
- Non-linear metasurfaces
- Multidisciplinary

Conclusions

Terahertz Science and Technology

Terahertz Science and Technology

THz GAP

Manipulation of THz waves

Oxford, Johnston's group

Quasi-optical components

- Lossy
- Bulky
- Heavy
- Expensive

Detectors

Bolometers

Hamamatsu, Technical resport

HEB Antenna + Mixer

J. Bird, USAS meeting, 2011

Photomixer + Antennas

💓 UCDAVIS

Electromagnetic Metamaterials

Natural material

Güney, Opt. Express 18, 12348

Metamaterials

Smith's group

Alu's group

Engineered "materials" with properties not found in natural materials

High loss

- BW limitations
- 3D granularity

Ultrathin Metasurfaces

Metasurface: 2D version of metamaterials

- Nanostructured surfaces
- Simple fabrication

Meta-transmitarray

Reduced losses

F. Capasso, V. Shalaev's groups

Alu's group Huygens' metasurfaces

U. Levy's group

Garcia Vidal's group

Recent Advances on Material Science

Graphene

Ultrathin 2D materials Plasmonic response at THz

Black Phosphorus

Motivation & Objectives

Towards a Flatland & Advanced Manipulation of EM waves

- Ultrathin artificial structures
- Strong light-matter interactions
- Suited at THz

JCDAVIS

- Reconfigurability
- Non-linearity
- Non-reciprocity
- Hyperbolic

- Guided devices
- Antennas
- Sensors
- On chip systems

Introduction

- Graphene plasmonics: THz devices & antennas
- Non-reciprocal metasurfaces
- Hyperbolic metasurfaces
- Non-linear metasurfaces
- Multidisciplinary
- Conclusions

Graphene Plasmonics

Samsung

$$\vec{J}_{S} = \vec{\sigma} \vec{E} \quad \vec{\sigma} = \begin{pmatrix} \sigma_{d} & \sigma_{h} \\ -\sigma_{h} & \sigma_{d} \end{pmatrix}$$

$$\vec{\sigma}(\omega, T, \tau \mu_{c(E_{bias}, H_{bias})}, k_{\rho},)$$

Plasmons on noble metals @ optics

EM wave at the interface between a dielectric (Re[ϵ_m]> 0) and a metal (Re[ϵ_m]< 0)

- Very confined waves
- Relatively large loss

Plasmons <u>on graphene @ THz</u> Re[ε_m]< 0 \longleftrightarrow Im[σ]< 0 (or Im[Z_s]> 0)

Tunable

Integration

- Miniaturization
- Gyroscopy

Graphene Plasmonics

Graphene-based THz Switches & Filters

□ Plasmonic switch

- Switching: graphene field's effect
- TL model
- Isolation > 40 dB

□ Plasmonic THz filters

- Accurate & scalable model
- Steepped impedance filter
 - Low-loss & tunable

J.S. Gomez-Diaz and J. Perruisseau, "Graphene-based plasmonic switches at near infrared frequencies", Optic Express, 2013. D. Correas-Serrano, J. S. Gomez-Diaz, et al, "Graphene based plasmonic tunable low pass filters in the THz band," IEEE Trans. on Nanotechnology, 2014.

Graphene-based THz Antennas

M. Tamagnone, J. S. Gomez-Diaz, et al, "Reconfigurable terahertz plasmonic antenna concept using a graphene stack," APL , 2012.
M. Tamagnone, J. S. Gomez-Diaz, et al, "Analysis and design of terahertz antennas based on plasmonic resonant graphene sheets," JAP , 2012.
D. Correas-Serrano, J. S. Gomez-Diaz, A. Alvarez-Melcon and A. Alù, "Electrically and Magnetically Biased Graphene-Based Cylindrical Waveguides: Analysis and Applications as Reconfigurable Antennas", IEEE Transactions on THz Science and Technology, 2015.

Graphene-based THz Antennas

M. Tamagnone, J. S. Gomez-Diaz, et al, "Reconfigurable terahertz plasmonic antenna concept using a graphene stack," APL , 2012.
M. Tamagnone, J. S. Gomez-Diaz, et al, "Analysis and design of terahertz antennas based on plasmonic resonant graphene sheets," JAP , 2012.
D. Correas-Serrano, J. S. Gomez-Diaz, A. Alvarez-Melcon and A. Alù, "Electrically and Magnetically Biased Graphene-Based Cylindrical Waveguides: Analysis and Applications as Reconfigurable Antennas", IEEE Transactions on THz Science and Technology, 2015.

Graphene-based Leaky-wave Antennas

Sinusoidally modulated surfaces at THz

- Several implementations based on graphene's field effect
- Beam scanning at fixed freq

A. Oliner and A. Hessel, "Guided waves on sinusoidally-modulated reactance surfaces," IRE Transactions on Antennas and Propagation, 1959 M. Esquius-Morote, J.S. Gomez-Diaz, and J. Perruisseau-Carrier, IEEE Trans. on Terahertz Science and Technology, vol. 4, pp. 116-122, 2014 J.S. Gomez-Diaz, M. Esquius-Morote and J. Perruisseau-Carrier, Optic Express, vol. 21, pp. 24856-24872, 2013

Graphene-based Leaky-wave Antennas

Sinusoidally modulated surfaces at THz

- Several implementations based on graphene's field effect
- Beam scanning at fixed freq

A. Oliner and A. Hessel, "Guided waves on sinusoidally-modulated reactance surfaces," IRE Transactions on Antennas and Propagation, 1959 M. Esquius-Morote, J.S. Gomez-Diaz, and J. Perruisseau-Carrier, IEEE Trans. on Terahertz Science and Technology, vol. 4, pp. 116-122, 2014 J.S. Gomez-Diaz, M. Esquius-Morote and J. Perruisseau-Carrier, Optic Express, vol. 21, pp. 24856-24872, 2013

Experimental Results (I)

□ Fabrication of graphene stacks

- CVD of graphene
- Metallic contacts \rightarrow DC biasing + dynamic reconfiguration

J. S. Gómez-Díaz, C. Moldovan, S. Capdevilla, L. S. Bernard, J. Romeu, A. M. Ionescu, A. Magrez, and J. Perruisseau-Carrier, "Self-biased reconfigurable graphene stacks for terahertz plasmonics", Nature Communications, 2015.

CVD

Graphene stacks

- Enhanced reconfiguration capabilities + simple fabrication avoiding metals
- Measured using THz time-domain spectroscopy \rightarrow Good agreement theory

J. S. Gómez-Díaz, C. Moldovan, S. Capdevilla, L. S. Bernard, J. Romeu, A. M. Ionescu, A. Magrez, and J. Perruisseau-Carrier, "Self-biased reconfigurable graphene stacks for terahertz plasmonics", Nature Communications, 2015.

Introduction

- Graphene plasmonics: THz devices & antennas
- Non-reciprocal metasurfaces
- Hyperbolic metasurfaces
- Non-linear metasurfaces
- Multidisciplinary

Conclusions

Reciprocity and Why it Needs to be Broken

Reciprocity symmetry in transmission for opposite propagation directions

Slide courtesy of Dr. Dimitrious Sounas.

Onsager-Casimir Principle

Onsager-Casimir Principle

Non-Reciprocity with Momentum Bias

Demonstrated @ acoustics, microwaves and optics

R. Fleury et al, Science (2014)

N. A. Estep et al, Nature Phys. (2014)

D. Sounas, et al ACS Photonics (2014)

S. Qin et al, IEEE MTT (2014) Lira et al, PRL 109, 033901 (2012)

Demonstrated @ microwaves and optics

Non-reciprocal LWAs

Y. Hadad et al, Proc. Nat. Acad. Sci. (2016)

All **non-reciprocal** graphene THz devices rely on magnetic bias...

Non-reciprocal plasmonics

J.Yao Chin, et al. Nature Com. (2013)

Giant Faraday Rotation

Bulky static magnets

2D material & highly-confined plasmons but massive devices

□ All **non-reciprocal** graphene THz devices rely on magnetic bias...

Motivation and objectives

- Magnet-free non-reciprocal graphene plasmonics
- Linear momentum through graphene's field effect
- Integrated, low-cost technology
- Relatively easy fabrication
- Potential applications

plasmons but **massive** devices

 \mathbf{B}_0

Sour

88 88

Graphene's Field Effect

Reconfigurability through applied bias

Implement static conductivity profiles

$$n_{s} = C_{ox}(V_{DC} - V_{Dirac})/q_{e}$$
$$n_{s} = \frac{2}{\pi\hbar^{2}v_{F}^{2}} \int_{0}^{\infty} \varepsilon \left[f_{d}(\varepsilon - \mu_{c}) - f_{d}(\varepsilon + \mu_{c}) \right] d\varepsilon$$

Spatio-Temporal Modulation in Graphene

Graphene: Ideal material to implement spatiotemporal modulation @ THz

D. Correas-Serrano, J. S. Gómez-Díaz, D. Sounas, A. Alvarez-Melcon and A. Alù, "Non-reciprocal graphene devices and antennas at THz based on spatiotemporal modulation", IEEE Antennas and Wireless Propagation Letters, vol. 15, pp. 1529-1533, 2016.

Single Layer Graphene Isolator

□ Single layer implementation

R

PPW Graphene-based Isolator

Graphene PPW: Two orthogonal modes

■ PPW + ST modulation of one layer:

$$\sigma_1(z,t) = \sigma_0(1 + M\cos[\omega_m t - \beta_m z])$$

- Isolator requirements
 - Modes are phase-matched @ one direction
 - Modulated length = Coherence length L_c
- Coupled-mode analysis

$$\frac{da_1}{dz} = -jk_{z1}a_1 + Ca_2 e^{j(k_{z1}-k_{z2}-\beta_m)z}$$
$$\frac{da_2}{dz} = -jk_{z2}a_2 + Ca_1 e^{-j(k_{z1}-k_{z2}-\beta_m)z}$$

J. S. Gomez-Diaz - Flatland Optics with Ultrathin Metasurfaces

where $C = \frac{M\sigma_0}{8} E_{z1}(x_{\sigma 1}) E_{z2}^*(x_{\sigma 1})$

 $L_{c} = \pi/2|C|$

PPW Graphene-based Isolator (and II)

Non-Reciprocal Graphene Leaky-wave Antenna

Non-Reciprocal LWA Radiation/Reception

□ Non-reciprocity is two fold

- Radiation diagram in Tx Rx
- Frequency conversion

D. Correas-Serrano, J. S. Gómez-Díaz, D. Sounas, A. Alvarez-Melcon and A. Alù, "Non-reciprocal graphene devices and antennas at THz based on spatio-temporal modulation", IEEE Antennas and Wireless Propagation Letters, vol. 15, pp. 1529-1533, 2016.

Rx Angle

 f_0

 f_0 ·

Rx

-10

-15

Gain (dB)

 $f_0 - f_m$

 $f_0 - f_m$

Introduction

- Graphene plasmonics: THz devices & antennas
- Non-reciprocal metasurfaces
- □ Hyperbolic metasurfaces
- Non-linear metasurfaces
- Multidisciplinary

Conclusions

Hyperbolic and Isotropic Materials

Images from Lavrinenko's group (DTU, Denmark). SPIE Newsroom. DOI: 10.1117/2.1201410.005626

Hyperbolic Wave Propagation & Applications

Hyperbolic Wave Propagation & Applications

Topologies of Uniaxial Metasurfaces

J. S. Gomez-Diaz, M. Tymchenko and A. Alù, Physical Review Letters, vol. 114, pp. 233901, 2015

Plasmon Propagation

H. J. Bilow, IEEE TAP 51, 2788, 2003. [2] A. M. Patel and A. Grbic, IEEE TAP. 61, 211, 2013

R. Quarfoth, and D. Sievenpiper, IEEE TAP, vol. 61, 3597, 2013

J. S. Gomez-Diaz, M. Tymchenko and A. Alù, Physical Review Letters, vol. 114, pp. 233901, 2015

Practical Implementation of Hyperbolic MTSs

J. S. Gomez-Diaz, M. Tymchenko and A. Alù, Physical Review Letters, vol. 114, pp. 233901, 2015

□ Experimental verification @ optics

A. A. High, R. C. Devlin, A. Dibos, M. Polking, D. S. Wild, J. Perczel, N. P. de Leon, M. D. Lukin, and H. Park, Nature, vol. 522, pp. 192-196, 2015

Practical Implementation of Hyperbolic MTSs

A. A. High, R. C. Devlin, A. Dibos, M. Polking, D. S. Wild, J. Perczel, N. P. de Leon, M. D. Lukin, and H. Park, Nature, vol. 522, pp. 192-196, 2015

SPPs & Electrical Reconfigurability

□ Surface Plasmons (a) THz $\mu_c = 0.5eV$ $\mu_c = 0.1eV$ $\mu_c = 0.1eV$ $\mu_c = 0.3eV$ $\mu_c = 0.3eV$

Electrical reconfigurability

J. S. Gomez-Diaz, M. Tymchenko and A. Alù, Physical Review Letters, vol. 114, pp. 233901, 2015

Negative Refraction of SPPs

💓 UCDAVIS

Light-Matter Interactions

□ Spontaneous Emission Rate (SER) of emitters

- Large enhancement expected from analogy with bulk HMTM
- Dedicated Green's function approach

$$SER = \frac{P}{P_0} = 1 + \frac{6\pi}{\left|\vec{\mu}_p\right| k_0} \vec{\mu}_p \cdot \operatorname{Im}\left[\bar{\bar{G}}_{S}\left(\vec{r}_0, \vec{r}_0, \omega\right)\right] \cdot \vec{\mu}_p$$
$$\bar{\bar{G}}_{S}\left(\vec{r}_0, \vec{r}_0, \omega\right) = \frac{i}{8\pi^2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left(\Gamma_{ss} \bar{\bar{M}}_{ss} + \Gamma_{sp} \bar{\bar{M}}_{sp} + \Gamma_{ps} \bar{\bar{M}}_{ps} + \Gamma_{pp} \bar{\bar{M}}_{pp}\right) e^{i2k_z z_0} dk_x dk_y$$

□ SER in graphene

F. H. L. Koppens, D. E. Chang, and F. García de Abajo, Nanoletters, vol. 11, pp. 3370-3377, 2011

Light-Matter Interactions in Metasurfaces

□ SER of a z-oriented dipole over a uniaxial metasurface

- Topological transitions
- Dramatic SER enhancement

J. S. Gomez-Diaz, M. Tymchenko and A. Alù, Physical Review Letters, vol. 114, pp. 233901, 2015

 $ar{ar{\sigma}}^{\scriptscriptstyle e\!f\!f}$

d=10nm

êz∱

ê_{x v}

ê_y

Canalization & Hyperlensing

- □ Canalization over a surface
 - LDOS/SER enhancement
 - σ near-zero topology

□ Application: Hyperlensing

J. S. Gomez-Diaz and A. Alù, ACS Photonics, 2016

D. Correas-Serrano, J. S. Gomez-Diaz, M. Tymchenko and A. Alù, Optic Material Express, vol. 23, 29434-29448, 2015

Practical Limitations

J. S. Gomez-Diaz, M. Tymchenko and A. Alù, Optic Express, vol. 5, 2313-2329, 2015 D. Correas-Serrano, J. S. Gomez-Diaz, M. Tymchenko and A. Alù, Optic Material Express, vol. 23, 29434-29448, 2015

2D Natural Hyperbolic Materials

Black Phosphorus

- Thickness down to few nm
- Variable bandgap
- Anisotropic & plasmonic material
- □ Hyperbolic response ?
 - Local response $(q \rightarrow 0)$

D. Correas-Serrano, J. S. Gomez-Diaz, A. Alvarez Melcon, and A. Alù, "Black Phosphorus Plasmonics: From Anisotropic Elliptical Regimes to Nonlocality-Induced Canalization", Journal of Optics, 2016.

2D Natural Hyperbolic Materials

Black Phosphorus

- Thickness down to few nm
- Variable bandgap
- Anisotropic & plasmonic material
- □ Hyperbolic response ?
 - Local response $(q \rightarrow 0)$

D. Correas-Serrano, J. S. Gomez-Diaz, A. Alvarez Melcon, and A. Alù, "Black Phosphorus Plasmonics: From Anisotropic Elliptical Regimes to Nonlocality-Induced Canalization", Journal of Optics, 2016.

2D Natural Hyperbolic Materials

Black Phosphorus

- Thickness down to few nm
- Variable bandgap
- Anisotropic & plasmonic material
- □ Hyperbolic response ?
 - Local response $(q \rightarrow 0)$
 - Nonlocality induces a wideband canalization regime

D. Correas-Serrano, J. S. Gomez-Diaz, A. Alvarez Melcon, and A. Alù, "Black Phosphorus Plasmonics: From Anisotropic Elliptical Regimes to Nonlocality-Induced Canalization", Journal of Optics, 2016.

Introduction

- Graphene plasmonics: THz devices & antennas
- Non-reciprocal metasurfaces
- Hyperbolic metasurfaces
- □ Non-linear metasurfaces
- Multidisciplinary

Conclusions

Non-linear Responses

Enhancing Non-linear Responses (I)

Enhancing Non-linear Responses (and II)

□ Phase matching: Ultrathin Metasurfaces (SHG)

Relaxed conditions: in-plane

$$\vec{k}_{in1}^{\Box} + \vec{k}_{in2}^{\Box} = \vec{k}_{out}^{\Box}$$

Conversion efficiency

$$\omega \uparrow 2\omega \downarrow d \ll \lambda$$

Typical non-linear materials

$$\eta \equiv \frac{I_{2\omega}}{I_{\omega}} \propto \left(\frac{d}{\lambda_{2\omega}}\right)^2 \left|\chi_{eff}^{(2)} E_{\omega}\right|^2 \quad \left|\chi_{eff}^{(2)} E_{\omega}\right| \square \Longrightarrow \chi_{eff}^{(2)} \approx 10 \ pm/V \Longrightarrow I_{\omega} \approx 1 \ PW/cm^2$$

Standard nonlinear metasurfaces:

$$\left| \chi^{(2)}_{e\!f\!f} E_\omega
ight| \Box 1$$

Linden et al, PRL, 2012

Broadband terahertz generation from metamaterials

Liang Luo¹, Ioannis Chatzakis^{1,†}, Jigang Wang¹, Fabian B.P. Niesler², Martin Wegener², Thomas Koschny¹ & Costas M. Soukoulis^{1,3}

materials

LETTERS PUBLISHED ONLINE: 9 FEBRUARY 2015 | DOI: 10.1038/NMAT.4214

Predicting nonlinear properties of metamaterials from the linear response

Kevin O'Brien^{*}, Haim Suchowski^{1,2}[°], Junsuk Rho^{1,2}, Alessandro Salandrino¹, Boubacar Kante¹, Xiaobo Yin^{1,2} and Xiang Zhang^{1,2,3}*

Combining Two Worlds

□ Huge intrinsic NL response from MQWs

Ultrathin plasmonic resonators

Nonlinear Plasmonic Metasurfaces

Nonlinear plasmonic metasurfaces

20

10

30 40

FF power (mW)

60 70

50

FF intensity (kW cm⁻²)

J. Lee, M. Tymchenko, C. Argyropoulos, et al, Nature , vol. 511, pp. 65-69, 2014

□ Vision: Flat nonlinear paradigm

- Enhanced conversion efficiency
- Manipulation of the generated beam

Analysis of Nonlinear MTSs

□ Rigorous analysis of nonlinear Metasurfaces

Effective non-linear susceptibility

J. S. Gomez-Diaz, M Tymchenko, J Lee, M. A. Belkin, A Alù, Physical Review B, vol. 92, pp. 125429, 2015

Enhancing Efficiency: Approaches

J. S. Gomez-Diaz, M Tymchenko, J Lee, M. A. Belkin, A Alù, Physical Review B, vol. 92, pp. 125429, 2015.

Highly-Efficient Non-Linear Metasurfaces

J. Lee, N. Nookola, J. S. Gomez-Diaz, M. Tymchenko, F. Demmerle, G. Boehm, M. Amann, A. Alu, M. Belkin, Advanced Optical Materials, doi: 10.1002/adom.201500723, 2016.

Manipulating the Generated NL Beams

□ Pancharatnam-Berry approach

 \circ Local control of the phase by rotation \rightarrow subwavelength resolution!

- o High conversion efficiency
- o Enhanced functionalities for the SH beam
 - Beam steering
 - ➤ Focusing
 - Generation of vortex beam

M. Tymchenko, J. S. Gomez-Diaz, J. Lee, N. Nookala, M. A. Belkin, and A. Alù, Physical Review Letters, vol. 115, pp. 207403, 2015

Advanced Functionalities (I)

□ Steering the generated SH beam

□ Focusing the generated SH beam

M. Tymchenko, J. S. Gomez-Diaz, J. Lee, N. Nookala, M. A. Belkin, and A. Alù, Physical Review Letters, vol. 115, pp. 207403, 2015

J. S. Gomez-Diaz - Flatland Optics with Ultrathin Metasurfaces

1.0

Advanced Functionalities (and II)

M. Tymchenko, J. S. Gomez-Diaz, J. Lee, N. Nookala, M. A. Belkin, and A. Alù, "Advanced Control of Nonlinear Beams with Pancharatnam-Berry Metasurfaces", Physical Review B, 2016.

Experimental Results

J. Lee, N. Nookola, M. Tymchenko, J. S. Gomez-Diaz, F. Demmerle, G. Boehm, M. Amann, A. Alu, M. Belkin, Optica, Vol. 3, Issue 3, pp. 283-288, 2016.

Introduction

- Graphene plasmonics: THz devices & antennas
- Non-reciprocal metasurfaces
- Hyperbolic metasurfaces
- Non-linear metasurfaces
- Multidisciplinary

Conclusions

Nems Metasurfaces

□ Infrared detector

- Ultrathin metasurface \rightarrow Body of a nanomechanical resonator
- Combination of mechanical and electromagnetic resonances
- Room temperature

Y. Hui, J. S. Gomez-Diaz, A. Alù, and M. Rinaldi, Nature Communications, 2016.

Nems Metasurfaces: Features

□ Infrared detector

- Low noise, fast response
- High electromechanical coupling coefficient

Y. Hui, J. S. Gomez-Diaz, A. Alù, and M. Rinaldi, Nature Communications, 2016.

Introduction

- Graphene plasmonics: THz devices & antennas
- Non-reciprocal metasurfaces
- Hyperbolic metasurfaces
- Non-linear metasurfaces
- Multidisciplinary
- □ Conclusions

Conclusions

Towards a Flatland & Advanced Manipulation of EM waves

Flat nonlinear paradigm

Collaborators:

- Mr. Diego Correas-Serrano University of Califonia, Davis, USA
- Prof. Andrea Alù The University of Texas at Austin, USA
- Prof. Mikhail Belkin The University of Texas at Austin, USA
- Dr. Dimitrious Sounas The University of Texas at Austin, USA
- Prof. Mateo Rinaldi Northeastern University, USA
- Prof. Juan Mosig École Polytechnique Fédérale de Lausanne, Switzerland
- Dr. Michele Tamagnone École Polytechnique Fédérale de Lausanne, Switzerland
- Prof. A. Alvarez-Melcon Technical University of Cartagena, Spain.

J. Sebastian Gomez-Diaz

Thank you!

Department of Electrical and Computer Engineering University of California, Davis

